Instantaneous multi-sensor task allocation in static and dynamic environments

نویسنده

  • Diego Pizzocaro
چکیده

A sensor network often consists of a large number of sensing devices of different types. Upon deployment in the field, these sensing devices form an ad hoc network using wireless links or cables to communicate with each other. Sensor networks are increasingly used to support emergency responders in the field usually requiring many sensing tasks to be supported at the same time. By a sensing task we mean any job that requires some amount of sensing resources to be accomplished such as localizing persons in need of help or detecting an event. Tasks might share the usage of a sensor, but more often compete to exclusively control it because of the limited number of sensors and overlapping needs with other tasks. Sensors are in fact scarce and in high demand. In such cases, it might not be possible to satisfy the requirements of all tasks using available sensors. Therefore, the fundamental question to answer is: “Which sensor should be allocated to which task?", which summarizes the Multi-Sensor Task Allocation (MSTA) problem. We focus on a particular MSTA instance where the environment does not provide enough information to plan for future allocations constraining us to perform instantaneous allocation. We look at this problem in both static setting, where all task requests from emergency responders arrive at once, and dynamic setting, where tasks arrive and depart over time. We provide novel solutions based on centralized and distributed approaches. We evaluate their performance using mainly simulations on randomly generated problem instances; moreover, for the dynamic setting, we consider also feasibility of deploying part of the distributed allocation system on user mobile devices. Our solutions scale well with different number of task requests and manage to improve the utility of the network, prioritizing the most important tasks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Moving Landmark’s Speed on Multi-Robot Simultaneous Localization and Mapping in Dynamic Environments

Even when simultaneous localization and mapping (SLAM) solutions have been broadly developed, the vast majority of them relate to a single robot performing measurements in static environments. Researches show that the performance of SLAM algorithms deteriorates under dynamic environments. In this paper, a multi-robot simultaneous localization and mapping (MR-SLAM) system is implemented within a...

متن کامل

Static Task Allocation in Distributed Systems Using Parallel Genetic Algorithm

Over the past two decades, PC speeds have increased from a few instructions per second to several million instructions per second. The tremendous speed of today's networks as well as the increasing need for high-performance systems has made researchers interested in parallel and distributed computing. The rapid growth of distributed systems has led to a variety of problems. Task allocation is a...

متن کامل

A Study of Human-Agent Collaboration for Multi-UAV Task Allocation in Dynamic Environments

We consider a setting where a team of humans oversee the coordination of multiple Unmanned Aerial Vehicles (UAVs) to perform a number of search tasks in dynamic environments that may cause the UAVs to drop out. Hence, we develop a set of multiUAV supervisory control interfaces and a multiagent coordination algorithm to support human decision making in this setting. To elucidate the resulting in...

متن کامل

Task allocation for multi-agent systems in dynamic environments

Multi-agent systems are frequently used in real world applications, with an increasing amount of agents and complexity. In order to accomplish the goals of the system, agents must cooperate using limited communication and knowledge of the environment. Task allocation for multi-agent systems in itself is a difficult problem and when both the tasks and the environment are dynamic, a robust yet ef...

متن کامل

Implementation of a Low- Cost Multi- IMU by Using Information Form of a Steady State Kalman Filter

In this paper, a homogenous multi-sensor fusion method is used to estimate the trueangular rate and acceleration with a combination of four low cost (< 10$) MEMS Inertial MeasurementUnits (IMU). An information form of steady state Kalman filter is designed to fuse the output of four lowaccuracy sensors to reduce the noise effect by the square root of the number of sensors. A hardware isimplemen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011